Do paths have the most zero forcing sets?

Krishna Menon (KTH)

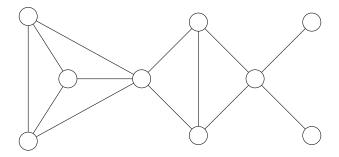
NORCOM 2025

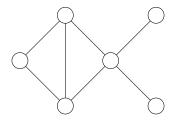
Based on joint work with Anurag Singh

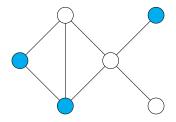
Background

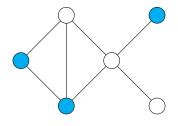
Graphs

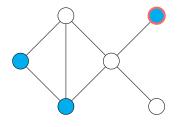
Simple, undirected graphs

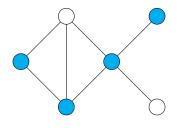


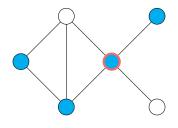


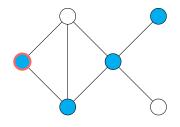


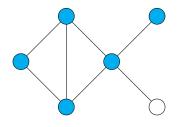


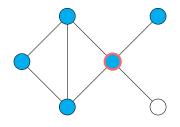


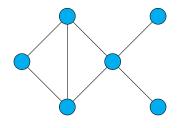


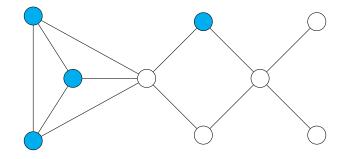


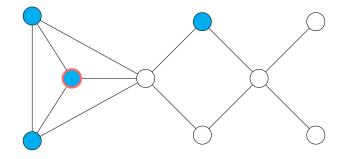


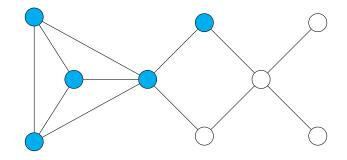


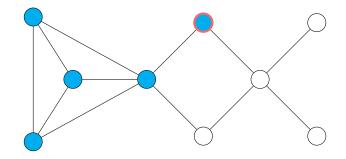


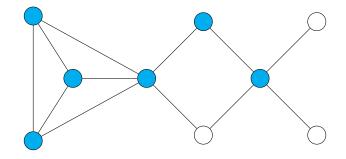


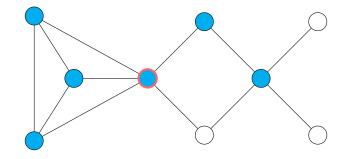


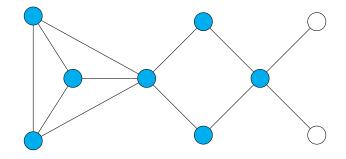










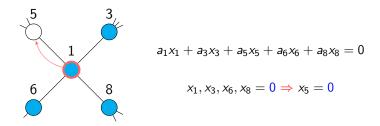


- A coloring process on graphs
- Start with some vertices colored blue.
- If a blue vertex v has a unique uncolored neighbor w, then w can be colored blue.

Definition

A zero forcing set is a set of initially colored vertices capable of coloring the entire graph.

• 'Zero forcing' since it is used to bound nullity of certain matrices.



• Also used to model rumor spreading.

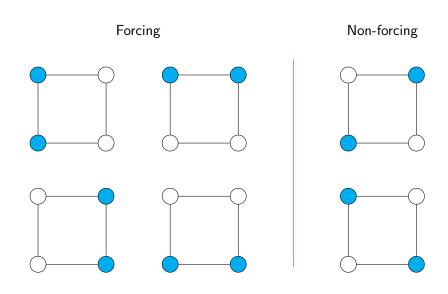
Numbers we study

Definition

For a graph G and $i \geq 1$, set

$$z(G; i) = \#\{A \in \binom{V(G)}{i} \mid A \text{ is zero forcing}\}.$$

$z(C_4;2)=4$



Example: Paths

Contains an end-vertex

Contains two adjacent vertices

Example: Paths

Proposition (Boyer et al., 2019)

A set of vertices in P_n is forcing if and only if it contains an end-vertex, or two adjacent vertices. Hence, for any $i \geq 1$,

$$z(P_n;i) = \binom{n}{i} - \binom{n-i-1}{i}.$$

Question by Boyer et al.

Conjecture

For any graph G on n vertices,

$$z(G; i) \le z(P_n; i)$$
 for all $i \ge 1$.

Our contribution

• Perform operation: $G \rightarrow G'$ such that

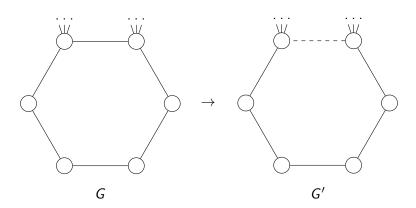
$$z(G; i) \leq z(G'; i)$$
 for all $i \geq 1$.

• Perform several such operations to obtain a path.

$$z(G;i) \leq z(G';i) \leq z(G'';i) \leq \cdots \leq z(P_n;i)$$

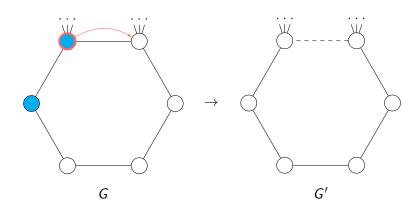
Hanging cycle

Delete an edge from which a cycle hangs



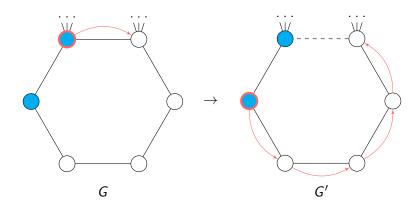
Hanging cycle

Delete an edge from which a cycle hangs



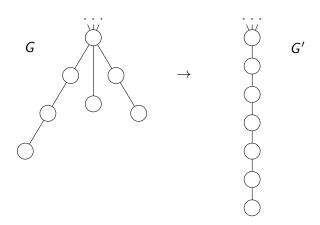
Hanging cycle

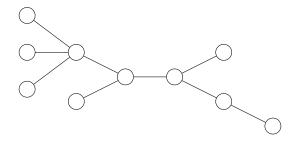
Delete an edge from which a cycle hangs

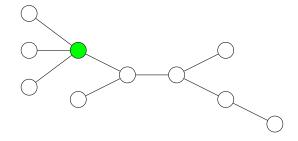


Hanging paths

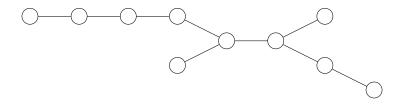
Combine paths hanging from a vertex

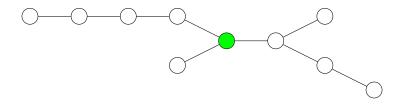


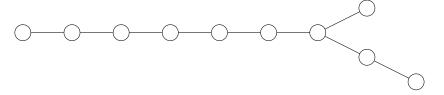


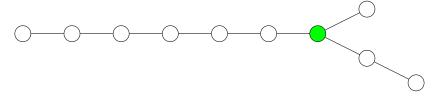


Trees









Theorem (M., Singh, 2025)

For any tree T with n vertices,

$$z(T; i) \le z(P_n; i)$$
 for all $i \ge 1$

where the inequality is strict for $i < \frac{n}{2}$.

Other operations

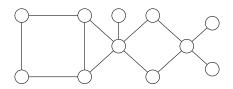
• Wedges of certain types of graphs.

• Taking the cone over a graph.

• Deleting some edges among neighbors of a simplicial vertex.

• Deleting leaves in a graph.

Other results



Theorem (M., Singh, 2025)

All outerplanar graphs, threshold graphs, as well as wedges of such graphs satisfy the conjecture.

Closing remarks

Spanning trees

Done: Any tree T satisfies the conjecture.

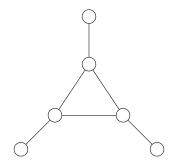
Hope: Any graph G will have a spanning tree T with $z(G; i) \leq z(T; i)$.

Spanning trees

Done: Any tree T satisfies the conjecture.

Hope: Any graph G will have a spanning tree T with $z(G; i) \leq z(T; i)$.

Reality: Not so kind



Equivalence on graphs

Equivalence on graphs with n vertices:

$$[G] = \{H \mid z(G; i) = z(H; i) \text{ for all } i \ge 1\}.$$

What do these equivalence classes look like?

Boyer et al. characterized $[P_n]$, $[K_n]$, $[C_n]$.

Zero forcing poset

Poset on equivalences classes with

$$[G] \leq [G'] \iff z(G;i) \leq z(G';i) \text{ for all } i \geq 1.$$

- Conjecture is that $[P_n]$ is the maximum element.
- Natural ways to go up from [G] to $[P_n]$ in the poset?
- What else? Cover relations, coatoms etc.

Thank you!

If you have any questions, please hesitate.

If you have any questions, please do not hesitate to ask me.

Example: It's good to combine hanging paths.

References

- AIM Special Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. (2008).
- K. Boyer, B. Brimkov, S. English, D. Ferrero, A. Keller, R. Kirsch, M. Phillips, and C. Reinhart. The zero forcing polynomial of a graph. Discrete Appl. Math. (2019).
- B. Curtis, L. Gan, J. Haddock, R. Lawrence, and S. Spiro. Zero forcing with random sets. Discrete Math. (2024).
- K. Menon and A. Singh. Exploring the influence of graph operations on zero forcing sets. Discrete Math. (2025).